Skip to main content

Optimizer

An optimizer is used to optimize model parameters.

Algorithems Provided by PyTorch

AdadeltaImplements Adadelta algorithm.Notes
AdagradImplements Adagrad algorithm.
AdamImplements Adam algorithm.Adam
AdamWImplements AdamW algorithm.
SparseAdamImplements lazy version of Adam algorithm suitable for sparse tensors.
AdamaxImplements Adamax algorithm (a variant of Adam based on infinity norm).
ASGDImplements Averaged Stochastic Gradient Descent.
LBFGSImplements L-BFGS algorithm, heavily inspired by minFunc.
NAdamImplements NAdam algorithm.
RAdamImplements RAdam algorithm.
RMSpropImplements RMSprop algorithm.
RpropImplements the resilient backpropagation algorithm.
SGDImplements stochastic gradient descent (optionally with momentum).SGD

torch.optim Base Class implements an abstract method step that updates the parameters.

Scheduler

Docs

torch.optim.lr_scheduler provides several methods to adjust the learning rate based on the number of epochs.

Reference