Optimizer
An optimizer is used to optimize model parameters.
Algorithems Provided by PyTorch
Adadelta | Implements Adadelta algorithm. | Notes |
---|---|---|
Adagrad | Implements Adagrad algorithm. | |
Adam | Implements Adam algorithm. | Adam |
AdamW | Implements AdamW algorithm. | |
SparseAdam | Implements lazy version of Adam algorithm suitable for sparse tensors. | |
Adamax | Implements Adamax algorithm (a variant of Adam based on infinity norm). | |
ASGD | Implements Averaged Stochastic Gradient Descent. | |
LBFGS | Implements L-BFGS algorithm, heavily inspired by minFunc. | |
NAdam | Implements NAdam algorithm. | |
RAdam | Implements RAdam algorithm. | |
RMSprop | Implements RMSprop algorithm. | |
Rprop | Implements the resilient backpropagation algorithm. | |
SGD | Implements stochastic gradient descent (optionally with momentum). | SGD |
torch.optim
Base Class implements an abstract method step
that updates the parameters.
Scheduler
torch.optim.lr_scheduler
provides several methods to adjust the learning rate based on the number of epochs.