Magic Wormhole Source Code Analysis
Clients
- Python: https://github.com/magic-wormhole/magic-wormhole (official, original)
- Rust: https://github.com/magic-wormhole/magic-wormhole.rs (official)
- Golang: https://github.com/psanford/wormhole-william.git (non-official)
- Golang + Fyne GUI Client: https://github.com/Jacalz/rymdport
- Rust + Tauri GUI Client: https://github.com/HuakunShen/wormhole-gui
Documentation
- https://github.com/magic-wormhole/magic-wormhole-protocols
- https://magic-wormhole.readthedocs.io/en/latest/
Performance
magic-wormhole can almost always eat the full bandwidth of the network. It's very fast. However, I have observed performance issue on Mac (M1 pro) during sending (not receiving).
See update on issue https://github.com/magic-wormhole/magic-wormhole.rs/issues/224
Sender Computer | Sender Client | Receiver Computer | Receiver Client | Speed |
---|---|---|---|---|
M1 pro Mac | python | Ubuntu i7 13700K | python | 112MB/s |
M1 pro Mac | rust | Ubuntu i7 13700K | python | 73MB/s |
M1 pro Mac | golang | Ubuntu i7 13700K | python | 117MB/s |
Ubuntu i7 13700K | python | M1 pro Mac | python | 115MB/s |
Ubuntu i7 13700K | rust | M1 pro Mac | python | 116MB/s |
Ubuntu i7 13700K | golang | M1 pro Mac | python | 117MB/s |
Ubuntu i7 13700K | python | Kali VM (on Mac) | python | 119MB/s |
Kali VM (on Mac) | python | Ubuntu i7 13700K | python | 30MB/s |
Ubuntu i7 11800H | rust | Ubuntu i7 13700K | python | 116MB/s |
Ubuntu i7 13700K | rust | Ubuntu i7 11800H | python | 116MB/s |
It seems like there is some performance issue with the rust implementation on the sender side.
Workflow
I read the client source code written in Python, Golang and Rust. The Python code is unreadable to me. Some packages like automat
and twisted
are used. I am not familiar with them and they make the code hard to read or follow. It even took me ~20-30 minutes to find the main function and get the debugger running. The code is not well-organized. It's hard to follow the workflow.
Rust is known for its complexity. It's async
and await
makes debugger jump everywhere. Variables allocated in heap are hard to track with debugger. Usually only a pointer address is shown.
The Golang version (although non-official) is the easiest to follow. Project structure is clear and simple. Goland's debugger works well. So let's follow the Golang version.
-
After command arguments parsing, everything starts here
sendFile(args[0])
-
A
wormhole.Client
is createdc := newClient()
-
The
code
is retrieved fromcode, status, err := c.SendFile(ctx, filepath.Base(filename), f, args...)
status
is a channel (var status chan wormhole.SendResult
) that waits for the result of sending file.-
s := <-status
if s.OK {
fmt.Println("file sent")
} else {
bail("Send error: %s", s.Error)
}
-
Here is Wormhole Client's
SendFile()
method-
func (c *Client) SendFile(ctx context.Context, fileName string, r io.ReadSeeker, opts ...SendOption) (string, chan SendResult, error) {
if err := c.validateRelayAddr(); err != nil {
return "", nil, fmt.Errorf("invalid TransitRelayAddress: %s", err)
}
size, err := readSeekerSize(r)
if err != nil {
return "", nil, err
}
offer := &offerMsg{
File: &offerFile{
FileName: fileName,
FileSize: size,
},
}
return c.sendFileDirectory(ctx, offer, r, opts...)
} -
offer
contains the file name and size.
-
-
Let's go into
sendFileDirectory()
method here. Everything happens here.-
sideId
: RandSideID returns a string appropate for use as the Side ID for a client.NewClient returns a Rendezvous client. URL is the websocket url of Rendezvous server.
SideID
is the id for the client to use to distinguish messages in a mailbox from the other client. AppID is the application identity string of the client.Two clients can only communicate if they have the same AppID.
sideID := crypto.RandSideID()
appID := c.appID()
rc := rendezvous.NewClient(c.url(), sideID, appID)
_, err := rc.Connect(ctx) -
Then a nameplate is generated
If users provides the code, the mailbox is attached to the code. Otherwise, a new mailbox is created. A mailbox is a channel for communication between two clients. The sender creates a mailbox and sends the code (address of mailbox + key) to the receiver. The receiver uses the code to open the mailbox.
if options.code == "" {
// CreateMailbox allocates a nameplate, claims it, and then opens the associated mailbox. It returns the nameplate id string.
// nameplate is a number string. e.g. 10
nameplate, err := rc.CreateMailbox(ctx)
if err != nil {
return "", nil, err
}
// ChooseWords returns 2 words from the wordlist. (e.g. "correct-horse")
pwStr = nameplate + "-" + wordlist.ChooseWords(c.wordCount())
} else {
pwStr = options.code
nameplate, err := nameplateFromCode(pwStr)
if err != nil {
return "", nil, err
}
// AttachMailbox opens an existing mailbox and releases the associated nameplate.
err = rc.AttachMailbox(ctx, nameplate)
if err != nil {
return "", nil, err
}
} -
Then a
clientProto
is createdclientProto := newClientProtocol(ctx, rc, sideID, appID)
appID
is a constant string.sideID
is a random string.sideID := crypto.RandSideID()
RandSideID returns a string appropate for use as the Side ID for a client.Let's see how
newClientProtocol
works.type clientProtocol struct {
sharedKey []byte
phaseCounter int
ch <-chan rendezvous.MailboxEvent
rc *rendezvous.Client
spake *gospake2.SPAKE2
sideID string
appID string
}
func newClientProtocol(ctx context.Context, rc *rendezvous.Client, sideID, appID string) *clientProtocol {
recvChan := rc.MsgChan(ctx)
return &clientProtocol{
ch: recvChan,
rc: rc,
sideID: sideID,
appID: appID,
}
} -
Then enter a go routing (transfer happens here)
-
clinetProto.ReadPake(ctx)
: block and waiting for receiver to connect (wait for receiver to enter the code)ReadPake
callsreadPlainText
to read the event from the mailbox.func (cc *clientProtocol) readPlaintext(ctx context.Context, phase string, v interface{}) error {
var gotMsg rendezvous.MailboxEvent
select {
case gotMsg = <-cc.ch:
case <-ctx.Done():
return ctx.Err()
}
if gotMsg.Error != nil {
return gotMsg.Error
}
if gotMsg.Phase != phase {
return fmt.Errorf("got unexpected phase while waiting for %s: %s", phase, gotMsg.Phase)
}
err := jsonHexUnmarshal(gotMsg.Body, &v)
if err != nil {
return err
}
return nil
}
func (cc *clientProtocol) ReadPake(ctx context.Context) error {
var pake pakeMsg
err := cc.readPlaintext(ctx, "pake", &pake)
if err != nil {
return err
}
otherSidesMsg, err := hex.DecodeString(pake.Body)
if err != nil {
return err
}
sharedKey, err := cc.spake.Finish(otherSidesMsg)
if err != nil {
return err
}
cc.sharedKey = sharedKey
return nil
}pake
's body is a string of length 66.otherSidesMsg
is[]uint8
bytes of length 33.Then
sharedKey
is generated by callingcc.spake.Finish(otherSidesMsg)
.spake
is a SPAKE2 object.sharedKey
is a 32-byte long byte array.So what is
pake
message read from the mailbox?TODO
-
err = collector.waitFor(&answer)
: Wait for receiver to enter Y to confirm. The answer contains a OK message -
A cryptor (type=
transportCryptor
) is created.cryptor := newTransportCryptor(conn, transitKey, "transit_record_receiver_key", "transit_record_sender_key")
recordSize := (1 << 14) // record size: 16384 byte (16kb)
// chunk
recordSlice := make([]byte, recordSize-secretbox.Overhead)
hasher := sha256.New()conn
is anet.TCPConn
TCP connection.A
readKey
andwriteKey
are generated with hkdf (HMAC-based Extract-and-Expand Key Derivation Function) fromtransitKey
and two strings innewTransportCryptor
.transitKey
is derived fromclientProto.sharedKey
andappID
.transitKey := deriveTransitKey(clientProto.sharedKey, appID)
sharedKey
is a 32-byte long key generated byclientProto
(apake.Client
).func newTransportCryptor(c net.Conn, transitKey []byte, readPurpose, writePurpose string) *transportCryptor {
r := hkdf.New(sha256.New, transitKey, nil, []byte(readPurpose))
var readKey [32]byte
_, err := io.ReadFull(r, readKey[:])
if err != nil {
panic(err)
}
r = hkdf.New(sha256.New, transitKey, nil, []byte(writePurpose))
var writeKey [32]byte
_, err = io.ReadFull(r, writeKey[:])
if err != nil {
panic(err)
}
return &transportCryptor{
conn: c,
prefixBuf: make([]byte, 4+crypto.NonceSize),
nextReadNonce: big.NewInt(0),
readKey: readKey,
writeKey: writeKey,
}
}recordSize
is 16384 byte (16kb), used to read file in chunks.hasher
is compute file hash while reading file. -
In the following loop, file is read and sent in chunks.
r
has typeio.Reader
. Every time 16KB is read.cryptor.writeRecord
encrypts the bytes and send the bytes.for {
n, err := r.Read(recordSlice)
if n > 0 {
hasher.Write(recordSlice[:n])
err = cryptor.writeRecord(recordSlice[:n]) // send 16KB in each iteration
if err != nil {
sendErr(err)
return
}
progress += int64(n)
if options.progressFunc != nil {
options.progressFunc(progress, totalSize)
}
}
if err == io.EOF {
break
} else if err != nil {
sendErr(err)
return
}
}Let's see how
writeRecord
works.package secretbox ("golang.org/x/crypto/nacl/secretbox")
is used to encrypt data.d.conn.Write
sends the encrypted data out.func (d *transportCryptor) writeRecord(msg []byte) error {
var nonce [crypto.NonceSize]byte
if d.nextWriteNonce == math.MaxUint64 {
panic("Nonce exhaustion")
}
binary.BigEndian.PutUint64(nonce[crypto.NonceSize-8:], d.nextWriteNonce)
d.nextWriteNonce++
sealedMsg := secretbox.Seal(nil, msg, &nonce, &d.writeKey)
nonceAndSealedMsg := append(nonce[:], sealedMsg...)
// we do an explit cast to int64 to avoid compilation failures
// for 32bit systems.
nonceAndSealedMsgSize := int64(len(nonceAndSealedMsg))
if nonceAndSealedMsgSize >= math.MaxUint32 {
panic(fmt.Sprintf("writeRecord too large: %d", len(nonceAndSealedMsg)))
}
l := make([]byte, 4)
binary.BigEndian.PutUint32(l, uint32(len(nonceAndSealedMsg)))
lenNonceAndSealedMsg := append(l, nonceAndSealedMsg...)
_, err := d.conn.Write(lenNonceAndSealedMsg)
return err
}
-
-